반응형
참조
용어 정리
- 배열에서는 rank와 shape이라는 2가지 용어가 있습니다.
- rank란 특정 배열의 차원을 이야기 하고, shape이란 특졍 배열이 어떻게 생겼는지, 즉 몇개의 요소가 있는지를 이야기합니다.
t = np.array([0., 1., 2., 3., 4., 5., 6.])
- 즉 위 예제코드에서 t 배열의 rank는 1이고, shape은 7입니다.
뉴런
- 입력 -> 연산 -> 활성화함수 -> 출력
import timeit
import numpy as np
import tensorflow as tf
def sigmoid(x):
return (1 / (1 + np.exp(-x)))
def Neuron(x, W, bias = 0):
z = x * W + bias
return sigmoid(z)
x = tf.random.normal((1,2), 0, 1)
W = tf.random.normal((1,2), 0, 1)
print('x.shape :' , x.shape)
print('W.shape:', W.shape)
print(x)
print(W)
print(Neuron(x,W))
x.shape : (1, 2)
W.shape: (1, 2)
tf.Tensor([[ 0.5970093 -0.2332151]], shape=(1, 2), dtype=float32)
tf.Tensor([[-0.9255325 -0.0097003]], shape=(1, 2), dtype=float32)
[[0.36527264 0.5005656 ]]
퍼셉트론 학습 알고리즘(가중치 업데이트)
- w(nextstep)=w+η (y−y~) x
- w : 가중치
- η : 학습률
- y : 정답 레이블
- y~: 예측 레이블
import timeit
import numpy as np
import tensorflow as tf
def sigmoid(x):
return (1 / (1 + np.exp(-x)))
def Neuron(x, W, bias = 0):
z = x * W + bias
return sigmoid(z)
def Neuron2(x, W, bias = 0):
z = tf.matmul(x, W, transpose_b=True) + bias
return sigmoid(z)
x = 1
y = 0
W = tf.random.normal([1], 0, 1)
print(Neuron(x, W))
print('y:', y)
for index in range(1000):
output = Neuron(x, W)
error = y - output
W = W + x * 0.1 * error
if index % 100 == 99:
print("{}\t{}\t{}".format(index + 1, error, output))
x2 = tf.random.normal((1,3), 0, 1)
y2 = tf.ones(1)
W2 = tf.random.normal((1,3), 0, 1)
print(Neuron2(x2, W2))
print('y2:', y2)
for i in range(1000):
output = Neuron2(x2, W2)
error = y2 - output
W2 = W2 + x2 * 0.1 * error
if i % 100 == 99:
print("{}\t{}\t{}".format(index + 1, error, output))
[0.30850583]
y: 0
100 [-0.08585579] [0.08585579]
200 [-0.04751848] [0.04751848]
300 [-0.03260403] [0.03260403]
400 [-0.02475172] [0.02475172]
500 [-0.0199242] [0.0199242]
600 [-0.01666195] [0.01666195]
700 [-0.01431227] [0.01431227]
800 [-0.01254034] [0.01254034]
900 [-0.01115692] [0.01115692]
1000 [-0.01004725] [0.01004725]
[[0.320976]]
y2: tf.Tensor([1.], shape=(1,), dtype=float32)
1000 [[0.03050131]] [[0.9694987]]
1000 [[0.01481593]] [[0.9851841]]
1000 [[0.00975931]] [[0.9902407]]
1000 [[0.00727063]] [[0.99272937]]
1000 [[0.00579131]] [[0.9942087]]
1000 [[0.00481141]] [[0.9951886]]
1000 [[0.00411481]] [[0.9958852]]
1000 [[0.0035941]] [[0.9964059]]
1000 [[0.00319022]] [[0.9968098]]
1000 [[0.00286794]] [[0.99713206]]
AND Gate
import timeit
import numpy as np
import tensorflow as tf
def sigmoid(x):
return (1 / (1 + np.exp(-x)))
X = np.array([[1,1], [1,0], [0,1], [0,0]])
Y = np.array([[1], [0], [0], [0]])
W = tf.random.normal([2], 0, 1)
b = tf.random.normal([1], 0, 1)
b_x = 1
for i in range(2000):
error_sum = 0
for j in range(4):
output = sigmoid(np.sum(X[j] * W) + b_x + b)
error = Y[j][0] - output
W = W + X[j] * 0.1 * error
b = b + b_x * 0.1 * error
error_sum += error
if i % 200 == 0:
print("Epoch {:4d}\tError Sum{}".format(i, error_sum))
print("\n가중치\t: {}".format(W))
print("편향\t: {}".format(b))
for i in range(4):
print("X: {} Y: {} Output: {}".format(X[i], Y[i], sigmoid(np.sum(X[i] * W) + b)))
Epoch 0 Error Sum[-0.5211484]
Epoch 200 Error Sum[-0.10944445]
Epoch 400 Error Sum[-0.06540047]
Epoch 600 Error Sum[-0.04651934]
Epoch 800 Error Sum[-0.03599498]
Epoch 1000 Error Sum[-0.02929975]
Epoch 1200 Error Sum[-0.02467646]
Epoch 1400 Error Sum[-0.02129728]
Epoch 1600 Error Sum[-0.01872229]
Epoch 1800 Error Sum[-0.01669659]
가중치 : [6.974747 6.9778795]
편향 : [-11.641185]
X: [1 1] Y: [1] Output: [0.9098202]
X: [1 0] Y: [0] Output: [0.00931807]
X: [0 1] Y: [0] Output: [0.00934703]
X: [0 0] Y: [0] Output: [8.796174e-06]
OR Gate
import timeit
import numpy as np
import tensorflow as tf
def sigmoid(x):
return (1 / (1 + np.exp(-x)))
X = np.array([[1,1], [1,0], [0,1], [0,0]])
Y = np.array([[1], [1], [1], [0]])
W = tf.random.normal([2], 0, 1)
b = tf.random.normal([1], 0, 1)
b_x = 1
for i in range(2000):
error_sum = 0
for j in range(4):
output = sigmoid(np.sum(X[j] * W) + b_x + b)
error = Y[j][0] - output
W = W + X[j] * 0.1 * error
b = b + b_x * 0.1 * error
error_sum += error
if i % 200 == 0:
print("Epoch {:4d}\tError Sum{}".format(i, error_sum))
print("\n가중치\t: {}".format(W))
print("편향\t: {}".format(b))
for i in range(4):
print("X: {} Y: {} Output: {}".format(X[i], Y[i], sigmoid(np.sum(X[i] * W) + b)))
Epoch 0 Error Sum[1.3766354]
Epoch 200 Error Sum[-0.04944375]
Epoch 400 Error Sum[-0.02580962]
Epoch 600 Error Sum[-0.01736318]
Epoch 800 Error Sum[-0.01303778]
Epoch 1000 Error Sum[-0.01041865]
Epoch 1200 Error Sum[-0.00866691]
Epoch 1400 Error Sum[-0.00741445]
Epoch 1600 Error Sum[-0.00647528]
Epoch 1800 Error Sum[-0.00574668]
가중치 : [8.210555 8.2069435]
편향 : [-4.6388216]
X: [1 1] Y: [1] Output: [0.9999924]
X: [1 0] Y: [1] Output: [0.9726614]
X: [0 1] Y: [1] Output: [0.9725652]
X: [0 0] Y: [0] Output: [0.00957649]
XOR Gate
from pickletools import optimize
from tabnanny import verbose
from matplotlib import units
import numpy as np
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
np.random.seed(111)
def sigmoid(x):
return (1 / (1 + np.exp(-x)))
X = np.array([[1,1], [1,0], [0,1], [0,0]])
Y = np.array([[0], [1], [1], [0]])
model = Sequential([Dense(units=2, activation='sigmoid', input_shape=(2,)),
Dense(units=1, activation='sigmoid')])
model.compile(optimizer = tf.keras.optimizers.SGD(lr=0.1), loss='mse')
model.summary()
histopry = model.fit(X, Y, epochs = 2000, batch_size=1, verbose=1)
print(model.predict(X))
[[0.15112422]
[0.8442709 ]
[0.801257 ]
[0.17558895]]
반응형